Fluorescent Sensing of Fluoride in Cellular System
نویسندگان
چکیده
Fluoride ions have the important roles in a lot of physiological activities related with biological and medical system, such as water fluoridation, caries treatment, and bone disease treatment. Great efforts have been made to develop new methods and strategies for F(-) detection in the past decades. Traditional methods for the detection of F(-) including ion chromatography, ion-selective electrodes, and spectroscopic techniques have the limitations in the biomedicine research. The fluorescent probes for F(-) are very promising that overcome some drawbacks of traditional fluoride detection methods. These probes exhibit high selectivity, high sensitivity as well as quick response to the detection of fluoride anions. The review commences with a brief description of photophysical mechanisms for fluorescent probes for fluoride, including photo induced electron transfer (PET), intramolecular charge transfer (ICT), fluorescence resonance energy transfer (FRET), and excited-state intramolecular proton transfer (ESIPT). Followed by a discussion about common dyes for fluorescent fluoride probes, such as anthracene, naphalimide, pyrene, BODIPY, fluorescein, rhodamine, resorufin, coumarin, cyanine, and near-infrared (NIR) dyes. We divide the fluorescent probes for fluoride in cellular application systems into nine groups, for example, type of hydrogen bonds, type of cleavage of Si-O bonds, type of Si-O bond cleavage and cylization reactions, etc. We also review the recent reported carriers in the delivery of fluorescent fluoride probes. Seventy-four typical fluorescent fluoride probes are listed and compared in detail, including quantum yield, reaction medium, excitation and emission wavelengths, linear detection range, selectivity for F(-), mechanism, and analytical applications. Finally, we discuss the future challenges of the application of fluorescent fluoride probes in cellular system and in vivo. We wish that more and more excellent fluorescent fluoride probes will be developed and applied in the biomedicine field in the future.
منابع مشابه
A Dual colorimetric and Fluorometric Anion Sensor Based on Polymerizable 1, 8-Naphthalimide Dye
A new polymerizable fluorescent sensor based on the photoinduced electron transfer PET for the selective determination of fluoride ions in DMF solutions has been synthesized. The sensing system was prepared by incorporating 4-Amino-1,8-naphthalimide derivatives containing thiourea side chain at the amino moiety AFTN as a neutral F- selective flourophore and was characterized by use of the DSC, ...
متن کاملSensing Activity of a New Generation of Thiourea-based Receptors; A Theoretical Study on the Anion Sensing
A theoretical density functional theory (DFT) study was performed on a series of the neutral N-phenylthiourea substituents (p-OC2H5, p-CH3, m-CH3, H, p-Cl, p-Br, m-Cl, and p-NO2) as the sensor of acetate and fluoride anions. The hydrogen bond character was analyzed as a scale ...
متن کاملA cascade reaction based fluorescent probe for rapid and selective fluoride ion detection.
A cascade reaction-based colorimetric and fluorescent probe for selective fluoride ion detection is reported. The probe displays a fast response (t1/2 = 2.41 min) and 550-fold fluorescence enhancement during sensing of fluoride ions. Application of the probe in live cell imaging is demonstrated.
متن کاملA BODIPY boronium cation for the sensing of fluoride ions.
In the presence of iodide ions, the cationic p-dimethylaminopyridine adduct of 1,3,5,7,8-pentamethylpyrromethene-boron fluoride [-DMAP](+) reacts with fluoride ions to afford the corresponding brightly fluorescent difluoride -F.
متن کاملAn aqueous red emitting fluorescent fluoride sensing probe exhibiting a large Stokes shift and its application in cell imaging.
A novel red emitting fluorescent probe exhibiting a 143 nm Stokes shift for the detection of fluoride ions in an aqueous solution was developed. The probe displays a rapid response, high selectivity and good sensitivity towards F(-). Application of the probe for the selective detection of intracellular F(-) has been successfully demonstrated in living cells.
متن کامل